Novel CAD Techniques for New Challenges in Deep Sub-Micron VLSI Design
Cheng, Lei
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81775
Description
Title
Novel CAD Techniques for New Challenges in Deep Sub-Micron VLSI Design
Author(s)
Cheng, Lei
Issue Date
2007
Doctoral Committee Chair(s)
Wong, Martin D.F.
Chen, Deming
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
In Chapter 2, we present a floorplanning algorithm for 3-D IC designs, which can effectively reduce interconnect delays. Our algorithm is based on a generalization of the classical 2-D slicing floorplans to 3-D slicing floorplans. A new encoding scheme of slicing floorplans (2-D/3-D) and its associated set of moves form the basis of the new simulated annealing based algorithm. In Chapter 3, we present the first FPGA floorplanning algorithm targeted for FPGAs with heterogeneous resources, such as Configurable Logic Blocks ( CLB), RAMs and multipliers. In Chapter 4, we present an efficient and effective method to reduce circuit leakage power consumption using input vector control. Our algorithm is able to solve the IVC and gate replacement problems simultaneously. A dynamic programming based-algorithm is used for making fast evaluation on input vectors, as well as replacing gates. In Chapter 5, we present an FPGA technology snapping algorithm targeting dynamic power minimization. We propose a switching activity estimation model considering glitches for FPGAs, and develop our technology mapping algorithm based on this model. In Chapter 6, we present an FPGA technology mapping algorithm targeting designs with multi-clock domains such as those containing multi-clocks, multi-cycle paths, and false paths. We use timing constraints to handle these unique clocking issues. Our algorithm produces a mapped circuit with the optimal mapping depth under timing constraints. In chapter 7, we target FPGA performance optimization using a novel BDD-based synthesis approach. In this work, we concentrate on delay reduction and conclude that there is a large optimization margin through BDD synthesis for FPGA performance optimization.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.