Scalable Mining and Link Analysis Across Multiple Database Relations
Yin, Xiaoxin
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81770
Description
Title
Scalable Mining and Link Analysis Across Multiple Database Relations
Author(s)
Yin, Xiaoxin
Issue Date
2007
Doctoral Committee Chair(s)
Han, Jiawei
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Because of the complexity of multi-relational data, efficiency and scalability are two major concerns in multi-relational data mining. In this thesis we propose scalable and accurate approaches for each data mining task studied. In order to achieve high efficiency and scalability, the approaches utilize novel techniques for virtually joining different relations, single-scan algorithms, and multi-resolutional data structures to dramatically reduce computational costs. Our experiments show that our approaches are highly efficient and scalable, and also achieve high accuracies in multi-relational data mining.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.