Automatic Software Performance Optimization on Modern Architectures
Jiang, Changhao
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81763
Description
Title
Automatic Software Performance Optimization on Modern Architectures
Author(s)
Jiang, Changhao
Issue Date
2007
Doctoral Committee Chair(s)
Snir, Marc
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Frequent pattern mining is a fundamental problem in data mining and a large number of distinct algorithms have been proposed to solve it efficiently. However, no single algorithm outperforms all the others since their relative performance highly depends on the characteristics of the input data. In the dissertation, we present a machine learning based approach to select the best frequent pattern mining algorithm based on the input characteristics. Three of the fastest publicly available algorithms, FP_Growth, LCM and Eclat, were extensively evaluated using synthetic data sets. The results of these evaluations were used to train a support-vector machine (SVM) prediction system, which is then used at runtime to predict the best mining algorithm for real-world data sets. Our experiments show that the runtime prediction overhead is negligible and that the trained SVM prediction system usually identifies the best algorithm. In case of misprediction, the selected algorithm is still competitive in performance.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.