A Matrix Approach for Finding Extrema: Problems With Modularity, Hierarchy, and Overlap
Yu, Tian-Li
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81757
Description
Title
A Matrix Approach for Finding Extrema: Problems With Modularity, Hierarchy, and Overlap
Author(s)
Yu, Tian-Li
Issue Date
2006
Doctoral Committee Chair(s)
Goldberg, David E.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Unlike most simple textbook examples, the real world is full with complex systems, and researchers in many different fields are often confronted by problems arising from such systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition according to the complex system is the key. In this research project, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bone types of interactions---modularity, hierarchy, and overlap, theories and models are developed to dissect and inspect problem decomposition in the context of genetic algorithms. This dissertation presents a research project to develop a competent optimization method to solve boundedly difficult problems with modularity, hierarchy, and overlap by explicit problem decomposition. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and decompose the problem. The results from this thesis should benefit research both technically and scientifically. Technically, this thesis develops an automated dependency structure matrix clustering technique and utilizes it to design a competent black-box problem solver. Scientifically, the explicit interaction model better describes the problem structure and helps researchers gain important insights through the explicitness of the procedure.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.