This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81665
Description
Title
Random Number Generation Using a Biased Source
Author(s)
Pae, Sung-il
Issue Date
2005
Doctoral Committee Chair(s)
Loui, Michael C.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Language
eng
Abstract
We study random number generation using a biased source motivated by previous works on this topic, mainly, von Neumman (1951), Elias (1972), Knuth and Yao (1976) and Peres (1992). We study the problem in two cases: first, when the source distribution is unknown, and second, when the source distribution is known. In the first case, we characterize the functions that use a discrete random source of unknown distribution to simulate a target discrete random variable with a given rational distribution. We identify the functions that minimize the ratio of source inputs to target outputs. We show that these optimal functions are efficiently computable. In the second case, we prove that it is impossible to construct an optimal tree algorithm recursively, using algebraic decision procedures. Our model of computation is sufficiently general to encompass previously known algorithms for this problem.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.