An Evaluation of Text Classification Methods for Literary Study
Yu, Bei
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81543
Description
Title
An Evaluation of Text Classification Methods for Literary Study
Author(s)
Yu, Bei
Issue Date
2006
Doctoral Committee Chair(s)
Linda Smith
Department of Study
Library and Information Science
Discipline
Library and Information Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Literature, American
Language
eng
Abstract
Some of our conclusions are consistent with what are obtained in topic classification, such as Odds Ratio does not improve SVM performance and stop word removal might harm classification. Some conclusions contradict previous results, such as SVM does not beat naive Bayes in both cases. Some findings are new to this area---SVM and naive Bayes select top features in different frequency ranges; stemming might harm feature selection methods. These experiment results provide new insights to the relation between classification methods, feature engineering options and non-topic document properties. They also provide guidance for classification method selection in literary text classification applications.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.