Architectural and Compiler Techniques for Energy Reduction in High-Performance Microprocessors
Bellas, Nikolaos
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81278
Description
Title
Architectural and Compiler Techniques for Energy Reduction in High-Performance Microprocessors
Author(s)
Bellas, Nikolaos
Issue Date
1999
Doctoral Committee Chair(s)
Ibrahim Hajj
Department of Study
Electrical Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Energy
Language
eng
Abstract
More specifically, we propose a technique that uses an additional mini cache located between the instruction cache (I-Cache) and the CPU core; the mini cache buffers instructions that are nested within loops and are continuously fetched from the I-Cache. This mechanism can create very substantial energy savings, since the I-Cache unit is one of the main power consumers in most of today's high-performance microprocessors. Results are reported for the SPEC95 benchmarks in the R-4400 processor which implements the MIPS2 instruction set architecture.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.