Augmented Surface Integral Equation Method for Low-Frequency Electromagnetic Analysis
Qian, Zhiguo
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/81129
Description
Title
Augmented Surface Integral Equation Method for Low-Frequency Electromagnetic Analysis
Author(s)
Qian, Zhiguo
Issue Date
2009
Doctoral Committee Chair(s)
Chew, Weng Cho
Department of Study
Electrical and Computer Engineering
Discipline
Electrical and Computer Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Language
eng
Abstract
Several fundamental aspects of the surface integral equation (SIE) method including the low-frequency breakdown, the skin effect, and the substrate effect, have been addressed for full-wave electromagnetic analysis in the low-frequency regime, especially the modeling of electrical interconnects on chip and package levels. The augmentation technique is a simple and efficient remedy for the low-frequency breakdown, which is the bottleneck of the broadband simulation. Based on the augmented formulations, very complicated problems in the real world can be efficiently solved with appropriate preconditioning and fast algorithm acceleration. As required in many applications, a generalized impedance boundary condition (GIBC) formulation is developed to handle the skin effect rigorously and efficiently. It degenerates into traditional methods with two steps of approximations. These new techniques are also combined together into a comprehensive formulation to cover both the skin effect and the substrate effect without any low-frequency instability.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.