This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/80862
Description
Title
Inflight Characterization of Aircraft Icing
Author(s)
Melody, James William
Issue Date
2004
Doctoral Committee Chair(s)
Basar, Tamer
Department of Study
Electrical Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Aerospace
Language
eng
Abstract
This thesis advances the development of the Ice Management System (IMS), which has been previously proposed as an additional layer of safety against aircraft icing accidents, by presenting and validating a conceptual design for the icing characterization function of the IMS. This icing characterization function seeks to provide a near real-time estimate of the degradation of the aircraft flight dynamics due to icing. The icing characterization is extracted from various information sources comprising Hinfinity parameter identification of the flight dynamics, steady-state characterization of the aircraft trim, aerodynamic hinge moment sensing, and an estimate of the flight-dynamics excitation. Two aspects of the icing characterization are novel: (i) real-time Hinfinity parameter identification of the flight dynamics, and (ii) preprocessing and assimilation of the various measurements that individually provide partial information on the icing degradation into a single comprehensive icing characterization, the so-called sensor fusion function. These two aspects of the icing characterization are validated by applying them in computer simulation to a rich set of flight scenarios. Moreover, the Hinfinity parameter identification is applied successfully to flight-test data generated by the NASA Twin Otter icing research aircraft, and validated against an existing flight-dynamics identification technique. Finally, consideration of an independent icing degradation estimate from atmospheric and photographic measurements demonstrates that the H infinity parameter estimate provides an indication of icing degradation for a natural-icing flight test.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.