Withdraw
Loading…
Investigation of fiber and cracking behavior for conventional and ultra-high performance concretes using x-ray computed tomography
Oesch, Tyler Scott
Loading…
Permalink
https://hdl.handle.net/2142/78353
Description
- Title
- Investigation of fiber and cracking behavior for conventional and ultra-high performance concretes using x-ray computed tomography
- Author(s)
- Oesch, Tyler Scott
- Issue Date
- 2015-04-20
- Director of Research (if dissertation) or Advisor (if thesis)
- Kuchma, Daniel A.
- Doctoral Committee Chair(s)
- Spencer, Billie F., Jr.
- Committee Member(s)
- Landis, Eric N
- O’Daniel, James L
- Lange, David A.
- Cusatis, Gianluca
- Department of Study
- Civil & Environmental Eng
- Discipline
- Civil Engineering
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- X-Ray Computed Tomography (CT)
- Double Punch Test (DPT)
- Fiber Reinforced Concrete
- Ultra-High Performance Concrete (UHPC)
- Anisotropic Fiber Orientation
- Digital Image Processing
- Abstract
- To make significant advances in concrete engineering, understanding the behavior of cementitious materials at the micro-scale will be necessary. To reach this goal, the location and orientation of constituent materials within concrete members, as well as the nature of damage initiation and growth, need to be understood at very small scales. This dissertation sought to increase that understanding through the collection of micro-scale data using x-ray computed tomography (CT). The quasi-static phenomena investigated included the tensile, compression, and reinforcing bar pull-out behavior of both ultra-high performance concrete (UHPC) and conventional concrete. Ballistic damage of UHPC samples was also investigated. These testing efforts yielded a number important results. First, relationships were identified between mechanical performance and cracking parameters that could be quantified mathematically and implemented into future finite element analysis models. Second, these test results demonstrated that the cracking structures of UHPC samples subjected to the double punch test (DPT) are heavily influenced by fiber anisotropy. This can lead to actual crack structures that are significantly at variance with the theoretical crack structure, which may decrease DPT accuracy in predicting tensile strength. Third, fiber orientations within both small and large samples of UHPC were demonstrated to be highly anisotropic. Thus, the assumption of a uniform distribution of fiber orientations within UHPC could lead to significant over-predictions of strength in some structural members. The results of this dissertation have the potential to both improve the accuracy and resiliency of numerical models as well as provide insight to the materials engineering and structural design communities about the optimal use of UHPC.
- Graduation Semester
- 2015-5
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/78353
- Copyright and License Information
- Copyright 2015 Tyler Oesch
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…