An Investigation of the Multiple Scattering of Waves in Two-Dimensional Random Media
Romack, George Michael
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72620
Description
Title
An Investigation of the Multiple Scattering of Waves in Two-Dimensional Random Media
Author(s)
Romack, George Michael
Issue Date
1993
Doctoral Committee Chair(s)
Weaver, Richard L.
Department of Study
Theoretical and Applied Mechanics
Discipline
Theoretical and Applied Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Physics, Acoustics
Abstract
Numerical studies of the ensemble average, or coherent, wave in a two-dimensional random medium have been undertaken for the steady-state and transient cases. The medium consisted of a tensioned mesh with a uniform distribution of point masses attached at the intersection points of the mesh. For the steady-state case, a random distribution of springs was also added to the mesh points. Scatterer density and scatterer strength were varied by changing the number of added springs and their stiffness, respectively. The average center deflection for several hundred mesh configurations of a given scatterer density and strength were compared with the predictions of the quasicrystalline approximation (QCA) and coherent potential approximation (CPA) theories. For the transient case, a random distribution of additional point masses was added to act as the scatterers. The mesh was subjected to an impulse force at one end, and the measured phase speed and attenuation were again compared with the predictions of the QCA and CPA theories. In addition, spatial-averaged results were compared with ensemble-averaged results for the transient mesh. In both the steady-state and transient cases, the comparisons indicate that neither theory holds a distinct advantage over the other in terms of accuracy, and both may appear valid to the experimentalist in the lab or field. Finally, the use of multiple scattering theory to predict the modal density of a random medium was demonstrated for a thin plate with circular holes.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.