Numerical and Laboratory Studies of Ultrasonic Anderson Localization
Loewenherz, James Henry
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72619
Description
Title
Numerical and Laboratory Studies of Ultrasonic Anderson Localization
Author(s)
Loewenherz, James Henry
Issue Date
1992
Doctoral Committee Chair(s)
Weaver, Richard L.
Department of Study
Theoretical and Applied Mechanics
Discipline
Theoretical and Applied Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Physics, Acoustics
Abstract
A numerical study of Anderson localization in two dimensions and a laboratory study of weak localization in three dimensions are presented. The two-dimensional study was performed by mathematically modelling a system of masses connected to a rigid base by springs of random stiffness. The masses were connected together by inextensible, massless strings. The resulting system of equations was then solved on a digital computer by stepping forward in time and solving explicitly for the displacements at each time step. Plots of the second moment of energy vs. time were made for different amounts of disorder, with values for the ratio of randomness to coupling strength (W/V) ranging from 6.0 to 9.0. No mobility edge was found, indicating that all modes were exponentially localized regardless of the degree of disorder. The three-dimensional study was performed by scattering a beam of 7 MHz ultrasound at a cell containing a slurry of glass or PMMA spherical beads and water, and measuring the backscattered energy as a function of angle. In accord with theoretical predictions, an enhanced backscatter peak with a width of 12 degrees and a magnitude twice that of the large-angle scattered energy was observed with the glass beads in a water slurry. An ultrasonic beam splitter was designed and successfully implemented to observe the small-angle scattered energy.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.