This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72545
Description
Title
Line Bundles on Projective Homogeneous Spaces
Author(s)
Lauritzen, Niels Thomas Hjort
Issue Date
1993
Doctoral Committee Chair(s)
Haboush, W.J.,
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Abstract
The topic of my thesis is the geometry of projective homogeneous spaces G/H for a semisimple algebraic group G in characteristic p $>$ 0, where H is a subgroup scheme containing a Borel subgroup B. In characteristic p $>$ 0 there are an infinite number of subgroup schemes containing B--the reduced ones are the ordinary parabolic subgroups P $\supseteq$ B. Examples of non-reduced parabolic subgroup schemes are extensions of B by Frobenius kernels of P. Using an algebraic analogue of the fixed point formula of Atiyah and Bott, we give a formula for the Euler character of a homogeneous line bundle on G/H generalizing Weyl's character formula. The canonical line bundle on G/H is rarely negative ample. A consequence of this is, that G/H is Frobenius split only when H is an extension of a parabolic subgroup by a Frobenius kernel of G. In an attempt to generalize Kempf's vanishing theorem we discovered, that G/H with H non-reduced can be used to construct new counterexamples to Kodaira's vanishing theorem in characteristic p $>$ 0. For G of type $D\sb5$ and H the extension of B by the first Frobenius kernel of $P\sb\alpha$, where $P\sb\alpha$ is the minimal parabolic subgroup having (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)as its only positive root, we give an example of an ample line bundle $\cal{L}$ on G/H such that ${\cal L}\otimes\omega\sb{G/H}$ has negative Euler characteristic. This also answers an old question of Raynaud.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.