This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72544
Description
Title
Effective Versions of Ramsey's Theorem
Author(s)
Hummel, Tamara Lakins
Issue Date
1993
Doctoral Committee Chair(s)
Jockusch, Carl G., Jr.
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Abstract
Ramsey's Theorem states that if $P = \{C\sb1,\...,C\sb{n}\}$ is a partition of ($\omega\rbrack\sp{k}$ (the set of all unordered k-tuples of natural numbers) into finitely many classes, then there exists an infinite set A which is homogeneous for P; i.e., there exists $j, 1 \le j \le n,$ such that all k-tuples from A are in $C\sb{j}.$ Let H(P) denote the set of all infinite homogeneous sets for a partition P. We consider the degrees of unsolvability and arithmetical definability properties of sets in H(P) for recursive and recursively enumerable partitions P.
We use the notion of effective $\Delta\sbsp{1}{0}$-immunity to show that there exists a recursive partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp2$ such that for every $A \in H(P), A$ is effectively $\emptyset\sp\prime$-immune, and hence every $\Pi\sbsp{2}{0}$ set $A \in H(P)$ is such that $\emptyset\sp\prime\sp\prime \le\sb{T} A \oplus \emptyset\sp\prime.$ From this it follows that every $\Pi\sbsp{2}{0}$ 2-cohesive set is of degree 0$\sp\prime\sp\prime,$ where an infinite set A is 2-cohesive if for each r.e. partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp2,$ there exists a finite set F such that $A - F \in H(P).$
We begin a study of r.e. partitions and show that for every r.e. partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp2,$ there exists $A \in H(P)$ such that $A\sp\prime \le\sb{T} \emptyset\sp\prime\sp\prime.$ In addition, we show that every r.e. stable partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp3$ has a $\Delta\sbsp{4}{0}$ set $A \in H(P),$ while there exists a recursive stable partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp3$ with no $\Delta\sbsp{3}{0}$ set $A \in H(P).$ (A partition $P = \{C\sb1,\...,C\sb{n}\}$ of ($\omega\rbrack\sp{k+1}$ is stable if for all $D \in \lbrack \omega\rbrack\sp{k},$ there exists $i, 1 \le i \le n,$ such that $D \ \cup \{a\} \in C\sb{i}$ for sufficiently large a.)
We give Jockusch's proof of Seetapun's recent result that for every recursive partition $P = \{C\sb1, C\sb2\}$ of ($\omega\rbrack\sp2,$ there exists $A \in H(P)$ such that $\emptyset\sp\prime \not\leq\sb{T} A.$ We extend Seetapun's result by establishing arithmetic bounds for such a set A. We discuss applications of these results to Reverse Mathematics and to introreducible sets.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.