Study of Enzyme Evolution Within the MLE Subgroup Focusing on Characterizing Member Enzymes for the Purpose of Discovering Relationships Among Sequence, Structure, and Function
Sakai, Ayano
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72403
Description
Title
Study of Enzyme Evolution Within the MLE Subgroup Focusing on Characterizing Member Enzymes for the Purpose of Discovering Relationships Among Sequence, Structure, and Function
Author(s)
Sakai, Ayano
Issue Date
2009
Doctoral Committee Chair(s)
Gerlt, John A.
Department of Study
Center for Biophysics and Computational Biology
Discipline
Biophysics and Computational Biology
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Chemistry, Biochemistry
Biology, Bioinformatics
Biophysics, General
Abstract
This investigation explores sequence/structure/function relationships of enzymes by elucidating interesting insights into the structural basis for catalysis as well as potential design principles that can be used to develop catalysts for new reactions. The enolase superfamily possesses the most ubiquitous protein fold in Nature while the muconate lactonizing enzyme (MLE) subgroup represents the most divergent in chemical reactions in the superfamily; therefore, the MLE subgroup is an excellent candidate to appreciate chemistry driven evolution of enzymes. The MLE subgroup, whose members have diverse sequences but make up enzyme catalytic domains of close homology, is a good target of study for understanding the sequence/structure/function relationships. Exploring characterized members in the subgroup has improved our understanding of underlying mechanisms, and exploring members of the subgroup whose functions have not yet been assigned will offer new insights into possible metabolic pathways and enzyme evolution. In order to achieve an efficient, integrative research strategy to move from genomic sequence to actual function assignment, our new approach to assigning correct function to enzymes in the MLE subgroup incorporates two analytic techniques: operon context analysis and computational analysis, along with in vitro enzymology. The benefits of this approach for accurate prediction of a function for selected members of the MLE subgroup are discussed. Integrative analysis of protein functions guided by both sequence assessment and structural prediction will revolutionize the study of protein function assignment in the field of Biology and will promote advances in understanding the relationship between function and structure of proteins in science.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.