The Performance of Direct-Sequence Spread-Spectrum Communications With Selective Fading Channels and Rake Reception
Noneaker, Daniel Lee
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/72020
Description
Title
The Performance of Direct-Sequence Spread-Spectrum Communications With Selective Fading Channels and Rake Reception
Author(s)
Noneaker, Daniel Lee
Issue Date
1993
Doctoral Committee Chair(s)
Pursley, Michael B.
Department of Study
Electrical Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Abstract
The performance of a direct-sequence spread-spectrum communication system is evaluated for selective fading channels and rake reception. Several issues are examined that influence the probability of error of the system, and closed-form expressions are obtained for the probability of error. The development of these expressions and the use of a general class of channel models permit the removal of some restrictions and approximations that have been employed previously in the analysis of rake receiver performance.
It is demonstrated that the choice of the spreading sequence that is used for the direct-sequence waveform can have a significant effect on the probability of error. A good choice of the sequence produces a low probability of error over a range of channel delay spreads and Doppler spreads, and it is a good choice regardless of the number of taps of the rake receiver. The same sequence also provides superior performance for both coherent-combining and noncoherent-combining rake receivers.
The effect of the chip rate on the probability of error for a direct-sequence spread-spectrum system is also considered. It is shown that, for both a correlation receiver and a multiple-tap rake receiver, a system employing a high chip rate provides better performance than a system employing a low chip rate for most typical land-mobile communication channels. The high-chip-rate system is also much less susceptible than the low-chip-rate system to degradation of performance due to the Doppler spreading of the channel. In addition, a rake receiver is shown to be necessary for the adequate performance of a low-chip-rate system, but it is of limited value for a high-chip-rate system.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.