Radiation-Induced Segregation and Precipitation in Ion-Irradiated Molybdenum-Rhenium Alloys
Erck, Robert Alan
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/71855
Description
Title
Radiation-Induced Segregation and Precipitation in Ion-Irradiated Molybdenum-Rhenium Alloys
Author(s)
Erck, Robert Alan
Issue Date
1988
Doctoral Committee Chair(s)
Rehn, Lynn E.,
Wayman, C. Marvin
Department of Study
Metallurgy and Mining Engineering
Discipline
Metallurgical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Nuclear
Engineering, Metallurgy
Engineering, Materials Science
Abstract
Radiation-induced solute segregation and precipitation in molybdenum-rhenium solid-solution alloys were studied during elevated-temperature helium- and neon-ion irradiation. Radiation-induced segregation of Re atoms in the same direction as the defect fluxes, that is, toward the external surface, was measured during irradiation by in situ Rutherford backscattering spectrometry (RBS). The results of the segregation measurements were in agreement with theoretical models based on point-defect driven transport of solute atoms toward point-defect sinks.
After irradiation, near-surface microstructural changes were studied using transmission-electron microscopy (TEM). Radiation-induced chi-phase precipitates were identified. The precipitates adopted coincident and (111) twin orientations with respect to the matrix. The twinning morphology was explained in terms of a coincident-site-lattice model.
The results of the RBS and TEM studies constitute strong evidence that precipitation of the chi phase occurs in Mo-Re solid-solution alloys when radiation-induced solute segregation causes the equilibrium solubility limit to be exceeded near point-defect sinks.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.