Photolytic Laser-Induced Chemical Vapor Deposition for Aluminum Film Growth
Gorbatkin, Steven Mark
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/71846
Description
Title
Photolytic Laser-Induced Chemical Vapor Deposition for Aluminum Film Growth
Author(s)
Gorbatkin, Steven Mark
Issue Date
1987
Doctoral Committee Chair(s)
Greene, J.E.
Department of Study
Metallurgy and Mining Engineering
Discipline
Metallurgical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Materials Science
Abstract
The mechanisms of UV photodissociation of trimethylaluminum (TMA) and triethylaluminum (TEA) by a KrF (248 nm) pulsed excimer laser were investigated using optical emission spectroscopy, including time-resolved emission measurements. Position-resolved growth rate measurements were used to investigate film growth kinetics during photolysis of TMA using 248 nm light, and deposited films were analyzed using in-situ Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), scanning electron microscopy, and resistivity measurements.
The optical emission spectroscopy experiments were used to determine that during photodissociation of TMA using 248 nm light, electronically excited Al and CH are produced directly in the gas phase without collisions. These results, combined with analysis of the deposited films and a thermodynamic analysis of homogeneous and heterogeneous reactions involving TMA and Al(CH$\sb3$), lead to the conclusion that the primary precursors for film growth are photogenerated Al atoms which then diffuse to the substrate to condense and form a film.
The films, however, were found to be heavily contaminated with C (up to approximately 40 at%), which indicates other species, such as CH, were also precursors to film growth. The use of H$\sb2$ as a scavenger for gas-phase hydrocarbons and 248 nm pulsed surface irradiation during film growth were both found to be ineffective for reduction of C incorporation.
TEA was substituted for TMA to see if the CH formation channel was specific to TMA. CH production was suppressed, but not eliminated, and a new channel for the production of excited AlH was opened. Excited Al was also observed, and all three species were found by time-resolved emission measurements to be produced without collisions.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.