This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/71265
Description
Title
Projective Resolutions of Generic Order Ideals
Author(s)
Kim, Saeja Oh
Issue Date
1988
Doctoral Committee Chair(s)
Grayson, Daniel,
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Abstract
Let Y$\sp{\rm (n)}$ be the 1 x n matrix containing indeterminate entries $\{$Y$\sb1,\dots$,Y$\sb{\rm n}\}$ and X$\sp{\rm (n)}$ be the n x n alternating matrix containing indeterminate entries $\{$X$\sb{\rm ij}\vert$1 $\leq$ i $<$ j $\leq$ n$\}$, where we adopt the convention that X$\sb{\rm ii}$ = 0 and X$\sb{\rm ji}$ = $-$ X$\sb{\rm ij}$. Let $\{$g$\sbsp{1}{\rm (n)},\dots$,g$\sbsp{\rm n}{\rm (n)}\}$ be the entries of the product Y$\sp{\rm (n)}$X$\sp{\rm (n)}$. Let R$\sb{\rm n}$ be the ring $\doubz$ (X$\sb{\rm ij}$,Y$\sb1,\dots$,Y$\sb{\rm n}\rbrack\sb{\rm 1 \leq i < j \leq n}$. Then $\{$g$\sbsp{1}{\rm (n)},\dots$,g$\sbsp{\rm n-1}{\rm (n)}\}$ is a regular sequence and $\sum\sbsp{\rm i=1}{\rm n}$ Y$\sb{\rm i}$g$\sbsp{\rm i}{\rm (n)}$ = 0. Let I$\sb{\rm n}$ be the ideal of R$\sb{\rm n}$ generated by $\{$g$\sbsp{1}{\rm (n)},\dots$,g$\sbsp{\rm n}{\rm (n)}\}$ and J$\sb{\rm n}$ be the ideal of R$\sb{\rm n}$ generated by $\{$g$\sbsp{1}{\rm (n)},\dots$,g$\sbsp{\rm n}{\rm (n)},(-1)\sp{\rm n+1}$pf(X$\sp{\rm (n)})\}$. Since the pfaffian of X$\sp{\rm (2m+1)}$ is zero, J$\sb{\rm 2m+1}$ = I$\sb{\rm 2m+1}$. I$\sb{\rm n}$ is the generic order ideal of the second syzygy M of the Koszul complex resolution of $\doubz$ (Y$\sb1,\dots$,Y$\sb{\rm n}$) /(Y$\sb1,\dots$,Y$\sb{\rm n}$) for n $\geq$ 3, and is the ideal of relations of Sym$\sb{\doubz\lbrack\rm Y\sb1,\dots,Y\sb{n}\rbrack}(\Lambda\sp{\rm n-2}(\doubz$ (Y$\sb1,\dots$,Y$\sb{\rm n}\rbrack)\sp{\rm n}$/M*). Since I$\sb{\rm n}$ has grade n $-$ 1 and is generated by n elements, it is an almost complete intersection. Huneke and Ulrich showed that J$\sb{\rm n}$ is a perfect prime ideal of grade n $-$ 1 and the ideals J$\sb{\rm n+1}$ and (J$\sb{\rm n}$,Y$\sb{\rm n+1}$) are linked by the regular sequence $\{$g$\sbsp{1}{\rm (n+1)},\dots$,g$\sbsp{\rm n}{\rm (n+1)}\}$.
In this thesis, we produce a minimal free resolution of R$\sb{\rm 2n}$/I$\sb{\rm 2n}$. From this resolution, we read that I$\sb{\rm 2n}$ is an almost perfect ideal (i.e. pd(R$\sb{\rm 2n}$/I$\sb{\rm 2n}$) = grade(I$\sb{\rm 2n}$) + 1), Ext$\sbsp{\rm R\sb{2n}}{\rm 2n}$(R$\sb{\rm 2n}$/I$\sb{\rm 2n}$,R$\sb{\rm 2n}$) = R$\sb{\rm 2n}$/(Y$\sb1,\dots$,Y$\sb{\rm 2n}$), (Y$\sb1,\dots$,Y$\sb{\rm 2n}$) $\in$ Ass(R$\sb{\rm 2n}$/I$\sb{\rm 2n}$) and J$\sb{\rm 2n}$ $\in$ Ass(R$\sb{\rm 2n}$/I$\sb{\rm 2n}$).
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.