Immersions of Positively Curved Manifolds Into Manifolds With Curvature Bounded Above
Menninga, Nadine Louise
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/71220
Description
Title
Immersions of Positively Curved Manifolds Into Manifolds With Curvature Bounded Above
Author(s)
Menninga, Nadine Louise
Issue Date
1984
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Abstract
This paper investigates the following questions. If a compact manifold, M, with positive sectional curvature is isometrically immersed in some ambient space, N, what is the radius of the smallest ball in which its image lies? Additionally, when can the knowledge that the image lies inside a ball of restricted size be used to conclude that the immersion is an imbedding whose image bounds a convex body in N?
The major results presented in this paper are the following theorems:
Theorem 1. Let M be a compact, connected Riemannian manifold of dimension m, m (GREATERTHEQ) 2, with K(M) (GREATERTHEQ) 1/c('2), where c is a positive constant. Let N be an n-dimensional Riemannian manifold such that (pi)c (LESSTHEQ) i(N) and K(N) ) N is an isometric immersion, then x(M) is contained in a metric ball of N with radius R 0 and simply connected space N of constant curvature less than 1/(4c('2)), there exists an M satisfying the above conditions and an immersion x: M (--->) M such that x(M) lies in no ball of radius 1/2(pi)c - (epsilon).
Theorem 2. Let M be a compact, connected, orientable, Riemannian manifold of dimension n-1, with n-1 (GREATERTHEQ) 2, and K(M) (GREATERTHEQ) 1/c('2), c is a positive constant. Let N be an n-dimensional Riemannian manifold such that (pi)c (LESSTHEQ) i(N) and K(N) ) N be an isometric immersion. Then x imbeds M into N as the boundary of a convex body.
In the above theorems K(N) is the sectional curvature function of the manifold N and i(N) is the injectivity radius of the manifold N.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.