Structure Formation and Crystallization in Two-Phase Polymer Blend Flows (Fibers, Polyethylene, Polypropylene)
Sakellarides, Stefanos L.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/69772
Description
Title
Structure Formation and Crystallization in Two-Phase Polymer Blend Flows (Fibers, Polyethylene, Polypropylene)
Author(s)
Sakellarides, Stefanos L.
Issue Date
1986
Department of Study
Chemical Engineering
Discipline
Chemical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Chemical
Abstract
Flow induced crystallization of high density polyethylene and polypropylene has been studied in a two-phase flow system using linear low density polyethylene as the carrier phase. Extensional stresses were generated under slow flow conditions by either of two methods: one involving flow past a stationary seed, the other involving a droplet deformation and bursting mechanism. In both cases, oriented, fibrillar crystallization of the high density phase was observed optically and correlated with calculations indicating the presence of flow-induced extensional gradients. Morphological, thermal, and birefringence data indicate that the crystalline fibers produced are oriented and superheatable, and consist of a multifibrillar substructure. For fibers produced by the droplet bursting process a semi-quantitative agreement was found between fiber melting point and birefringence based on the simplified analysis for the bursting induced extensional flow. These results demonstrate that two-phase flows of crystallizable systems are a convenient means for studying the phenomenon of flow induced crystallization in polymer melts.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.