Storage Capacity of the Linear Associator: Beginnings of a Theory of Computational Memory
Mumme, Dean C.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/69597
Description
Title
Storage Capacity of the Linear Associator: Beginnings of a Theory of Computational Memory
Author(s)
Mumme, Dean C.
Issue Date
1988
Doctoral Committee Chair(s)
Schneider, Walter
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Abstract
This thesis presents a characterization of a simple connectionist-system, the linear-associator, as both a memory and a classifier. Toward this end, a theory of memory based on information-theory is devised. The principles of the information-theory of memory are then used in conjunction with the dynamics of the linear-associator to discern its storage capacity and classification capabilities as they scale with system size. To determine storage capacity, a set of M vector-pairs called "items" are stored in an associator with N connection-weights. The number of bits of information stored by the system is then determined to be about (N/2)log$\sb2$M. The maximum number of items storable is found to be half the number of weights so that the information capacity of the system is quantified to be (N/2)log$\sb2$N.
Classification capability is determined by allowing vectors not stored by the associator to appear at its input. Conditions necessary for the associator to make a correct response are derived from constraints of information theory and the geometry of the space of input-vectors. Results include derivation of the information-throughput of the associator, the amount of information that must be present in an input-vector and the number of vectors that can be classified by an associator of a given size with a given storage load.
Figures of merit are obtained that allow comparison of capabilities of general memory/classifier systems. For an associator with a simple non-linearity on its output, the merit figures are evaluated and shown to be suboptimal. Constant attention is devoted to relative parameter size required to obtain the derived performance characteristics. Large systems are shown to perform nearest the optimum performance limits and suggestions are made concerning system architecture needed for best results. Finally, avenues for extension of the theory to more general systems are indicated.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.