Polynomial Preconditioning for Conjugate Gradient Methods
Ashby, Steven Flynn
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/69586
Description
Title
Polynomial Preconditioning for Conjugate Gradient Methods
Author(s)
Ashby, Steven Flynn
Issue Date
1988
Doctoral Committee Chair(s)
Saylor, Paul E.
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Computer Science
Abstract
The solution of a linear system of equations, Ax = b, arises in many scientific applications. If A is large and sparse, an iterative method is required. When A is hermitian positive definite (hpd), the conjugate gradient method of Hestenes and Stiefel is popular. When A is hermitian indefinite (hid), the conjugate residual method may be used. If A is ill-conditioned, these methods may converge slowly, in which case a preconditioner is needed. In this thesis we examine the use of polynomial preconditioning in CG methods for both hermitian positive definite and indefinite matrices. Such preconditioners are easy to employ and well-suited to vector and/or parallel architectures.
We first show that any CG method is characterized by three matrices: an hpd inner product matrix B, a preconditioning matrix C, and the hermitian matrix A. The resulting method, CG(B,C,A), minimizes the B-norm of the error over a Krylov subspace. We next exploit the versatility of polynomial preconditioners to design several new CG methods. To obtain an optimum preconditioner, we solve a constrained minimax approximation problem. The preconditioning polynomial, C($\lambda$), is optimum in that it minimizes a bound on the condition number of the preconditioned matrix, $p\sb{m}$(A). An adaptive procedure for dynamically determining the optimum preconditioner from the CG iteration parameters is also discussed. Finally, in a variety of numerical experiments, conducted on a Cray X-MP/48, we demonstrate the effectiveness of polynomial preconditioning.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.