Fundamental Study and Development of a Hydrogen Pellet Accelerator Using a Fuseless Two-Stage Plasma-Arc-Driven Electromagnetic Railgun
Honig, John
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/69331
Description
Title
Fundamental Study and Development of a Hydrogen Pellet Accelerator Using a Fuseless Two-Stage Plasma-Arc-Driven Electromagnetic Railgun
Author(s)
Honig, John
Issue Date
1986
Department of Study
Electrical Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Abstract
A detailed experimental study has, for the first time, successfully demonstrated the acceleration of frozen hydrogen pellets by means of a fuseless two-stage electromagnetic railgun system. This system consists of a pneumatic hydrogen pellet injector, which freezes and pneumatically pre-accelerates (with high-pressure helium as the propellant gas) cylindrical 1.6-mm-dia. by 1.75-mm-long hydrogen pellets, and a 60-cm-long 1.6-mm-dia. circular-bore electromagnetic railgun. The pellet is introduced into the railgun by means of a coupling piece, and a plasma-arc armature is created from the propellant gas by means of a very unique, fuseless, arc-initiation scheme. A slightly different, yet equally effective fuseless arc-initiation scheme was employed in a prototype room-temperature two-stage railgun system. Railgun-accelerated hydrogen pellet velocities of 1.6 km/s were achieved from pneumatically-accelerated injection velocities of 800 m/s. Streak-camera and current-probe data showed that the plasma-arc armature moves at a velocity proportional to the railgun current, I, and not to the often-quoted I('2). Insight to this I-dependence has been gained through the use of streak photography and current probes for varying bore geometries and gas pressures.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.