Reactor Static Optimization With Integral System Equations
Sheen, Yu-Min
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/67781
Description
Title
Reactor Static Optimization With Integral System Equations
Author(s)
Sheen, Yu-Min
Issue Date
1980
Department of Study
Nuclear Engineering
Discipline
Nuclear Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Nuclear
Energy
Language
eng
Abstract
An algorithm is developed for the optimality analysis of thermal reactor assemblies with a mathematical programming method. The neutron balances of the systems under consideration are transformed into integral equations by using Green's functions. Two-group, two-dimensional Green's functions for the neutron diffusion equations have been derived.
A nodal method has been used to transform integral system equations into equivalent matrix eigenvalue problems. A benchmark problem solved with both the nodal method and a finite difference code "CITATION" establishes the validity of the integral system equations. Possible ways of improving computed results are discussed. Only 50 mesh points are required in nodal method to obtain one percent error in the eigenvalue in the benchmark calculation. The same accuracy requires 2500 mesh points in the "CITATION" code.
With the nodal method described above, a two-dimensional maximum power problem for a thermal reactor is solved by treating the fissile material concentration as the controller. Two numerical examples are given.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.