Nuclear Quadrupole Double Resonance Spectroscopy: Studies of Hydrogen Bonding and Metal-Nitrogen Interactions
D'avignon, Dana Andre
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/67257
Description
Title
Nuclear Quadrupole Double Resonance Spectroscopy: Studies of Hydrogen Bonding and Metal-Nitrogen Interactions
Author(s)
D'avignon, Dana Andre
Issue Date
1981
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Chemistry, Inorganic
Language
eng
Abstract
The past ten years have brought a renewed interest in nuclear quadrupole resonance (NQR) spectroscopy. This attention stems from the advent of double resonance methods capable of observing with high sensitivity the weak quadrupole resonances. Through double resonance NQR much new and useful information regarding the solid state electronic structure of light elements is now becoming known.
The double resonance by level crossing (DRLC) technique of NQR detection is discussed with emphasis on its application of I = 1 nuclear spin systems. A description of NQR double resonance spectrometer of new design which is capable of performing DRLC is also included. This instrument, in favorable cases, is capable of generating NQR spectra on about 300 mg of sample.
Applications of the DRLC technique to the study of nitrogen and deuterium electric field gradients in several chemical systems is presented. The ('14)N and ('2)H NQR spectra of anthranilic acid in its three polymorphic forms yield information that is explained in light of the extensive hydrogen bonding present in the solid material. ('14)N studies of divalent metal anthranilate complexes are also presented. The quadrupole resonance parameters are accounted for in terms of a modified Townes-Dailey model consistent with tetrahedral coordination about the amino-nitrogen center. Finally, the ('14)N NQR spectra of a series of square planar palladium diethylene-triamine compounds is presented. The NQR information is interpreted in light of hypothesis regarding the kinetic trans-effect.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.