The Nuclear Magnetic Resonance Study of Lipid Protein Interactions in Model Membrane Systems
Rice, David Morrison
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/67227
Description
Title
The Nuclear Magnetic Resonance Study of Lipid Protein Interactions in Model Membrane Systems
Author(s)
Rice, David Morrison
Issue Date
1980
Department of Study
Chemistry
Discipline
Chemistry
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Chemistry, Physical
Language
eng
Abstract
The nuclear magnetic resonance spectrum of deuterium is a useful probe of the state of acyl chain order and rate of motion in bilayer membranes. In order to determine the effect of membrane protein upon the state of lipid motion, a variety to deuterium labeled phosphatidylcholines have been synthesized and these have been reconstituted with several membrane proteins and peptides. The proteins include gramicidn A', cytochrome C oxidase (E.C. 1.9.3.1), sarcoplasmic reticulum Ca('+2), Mg('+2) ATPase (E.C. 3.6.1.3), human brain myelin apoprotein, lipophillin, and f(,1) phage coat protein.
The deuterium magnetic resonance spectra of these complexes have shown that membrane protein neither orders nor completely immobilizes acyl chain motion. These results have been reconciled with nitroxide electron spin resonance results by noting the time scale differences between the two techniques. Only the fastest acyl chain motions are hindered by the protein surface. Phosphorus-31 results have indicated that there might be some slow motional component in the head group. The phosphorus spectrum of lipids is motionally broadened by protein. At low concentrations gramicidn A' has on ordering effect similar to cholesterol, but this ordering is probably irrelevant to biological membranes. Preliminary experiments have been begun using a deuterated nitroxide labeled phospholipid. A procedure is described for the synthesis of high yield, and experiments with gramicidin, while hindered by paramagnetic broadening, show that at the 2 position of the acyl chain there is little nitroxide perturbation.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.