Withdraw
Loading…
Structural and plasmonic properties of gold nanocrystals
Sivapalan, Sean
Loading…
Permalink
https://hdl.handle.net/2142/44310
Description
- Title
- Structural and plasmonic properties of gold nanocrystals
- Author(s)
- Sivapalan, Sean
- Issue Date
- 2013-05-24T22:07:19Z
- Director of Research (if dissertation) or Advisor (if thesis)
- Murphy, Catherine J.
- Doctoral Committee Chair(s)
- Rockett, Angus A.
- Committee Member(s)
- Murphy, Catherine J.
- Braun, Paul V.
- Lewis, Jennifer A.
- Bhargava, Rohit
- Department of Study
- Materials Science & Engineerng
- Discipline
- Materials Science & Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- gold nanoparticles
- plasmonics
- molecular enhanced spectroscopies
- Abstract
- The design of gold nanoparticles for surface-enhanced Raman scattering (SERS) and plasmonic enhanced fluorescence are more involved than simply maximizing the local field enhancement. The enhancement is a function of the excitation wavelength relative to the plasmon resonance as well as the distance of the reporter molecules from the nanoparticles’ surface. For suspension based measurements, additional considerations must also be made regarding absorption and scattering effects as light propagates through the sample. These effects are in addition to the other more commonly observed effects such as nanocrystal shape. With such a wide number of variables in play, a series of studies breaking down each of these components and their contribution to the observed enhancement is warranted. In this thesis, a series of experiments were undertaken using a platform based on polyelectrolyte coating of gold nanoparticles by layer-by-layer deposition. The reporter molecules are bound onto the surface of polyelectrolyte coated nanoparticles before trap coating them with an additional oppositely charged polyelectrolyte layer. By etching away the gold nanoparticle using potassium cyanide, we are then able to quantify the number of reporter molecule per nanoparticle using mass spectrometry. With this quantitative approach, we can the directly compare the effects of the aforementioned enhancement mechanisms on the observed signal intensity. This method overcomes some of the disparities in literature between reported values of enhancement due to assumption in the number of reporter molecules contribution to the signal intensity. Using our group’s expertise, we synthesized gold nanoparticle libraries of nanorods, cubes, trisoctahedra and spheres of different sizes. Each geometric configuration was characterized using a recently developed TEM technique - nano-beam coherent area diffraction. The as-synthesized were exposed to a coherent electron beam with probe size similar to that of the nanoparticles. The nanoparticles were then tilted such that were oriented so that the electron beam was parallel to a major zone axis and the diffraction pattern recorded. We observed streaks at each Bragg reflection that changed depending on the shape of the nanoparticle. This is in contrast to the spots for the Bragg reflections observed for normal small area diffraction patterns of gold nanoparticles. The angles between the streaks were compared using vector analysis to theoretical simulated three dimensional models and showed good correlation. These studies indicate such a platform can be used to elucidate the structure of high-index gold nanoparticle shapes such as trisoctahedra. The as-synthesized gold nanoparticles had surface plasmon resonances that incrementally spanned the spectral region of 500-900 nm. The reporter molecules used all have an absorption maximum far from the excitation wavelength. This ensures that chemical resonant based effects are minimized and plasmonic electromagnetic effects dominate the observed signal enhancement. For gold nanorods, the highest SERS signal from six different aspect ratios was observed with absorption maxima blue-shifted from the laser excitation wavelength. This finding is in contrast to substrate measurements where the maximum observed signal is red-shifted from the laser excitation wavelength. A similar platform was used to compare the effects of changing the nanoparticle shape on the observed SERS enhancement. We synthesized trisoctahedral, cubic and spherical geometries with electronic absorption maxima that overlapped within 3 nm. The relative SERS enhancement with 785 nm excitation was compared to theoretical simulations using finite element analysis. The observed signal intensities correlated well to the theory, suggesting the electromagnetic fields focused towards sharp edges and corners dominated the spectral response. The final chapters of this thesis are tailored towards understanding the distance dependence of plasmonic effects on the two photon absorption (TPA) cross section of an organic chromophore. First, we optimized the protocol to coat as-synthesized gold nanorod with multiple polyelectrolyte layers. By varying the purification and complexation parameters we were able to obtain up to ten layers of wrapping without great losses in nanoparticle concentration. The TPA molecules were then electrostatically attached at different incremental distances to compare the relative enhancement as a function of distance. We compared the TPA enhancement for on- resonant excitation and find a 40 fold enhancement for the molecules closest to the surface of the nanoparticles. For the off-resonant excitation, we observed an interesting trend where the TPA enhancement recovers for higher number of polyelectrolyte layers.
- Graduation Semester
- 2013-05
- Permalink
- http://hdl.handle.net/2142/44310
- Copyright and License Information
- Copyright 2013 Sean Sivapalan. Chapter 5 has been adapted from work published in Langmuir. Sivapalan, S. T.; Vella, J. H.; Yang, T. K.; Dalton, M. J.; Swiger, R. N.; Haley, J. E.; Cooper, T. M.; Urbas, A. M.; Tan, L.-S.; Murphy, C. J. Langmuir 2012, 28, 9147-9154. (Reproduced by permission of American Chemical Society and co-authors)
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…