Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon
Voyles, Paul Marriner
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/35205
Description
Title
Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon
Author(s)
Voyles, Paul Marriner
Issue Date
2001
Department of Study
Physics
Discipline
Physics
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
amorphous
silicon
microscopy
diffraction
paracrystalline
dark-field
medium-range order (mro)
coherence
semiconductors
hydrogenated
applescripts
Language
en
Abstract
Fluctuation electron microscopy is a transmission electron microscopy technique
for studying medium-range order in disordered materials. We compute the variance for the image intensity of low-resolution hollow-cone dark field electron micrographs as a function of the diffracting condition and microscope resolution. The variance is sensitive to fluctuations in diffraction from mesoscopic volumes of the sample. It carries information about medium-range order via the three- and four-body atomic distribution functions. Fluctuation microscopy has been applied to the study of amorphous silicon, with and without alloying with hydrogen. We find that amorphous silicon has significant medium-range order, more than can be described by the conventional continuous random network model. The structure is better described by a paracrystalline model, which consists of strained topologically crystalline grains which may or may not be embedded in a more disordered matrix. Experiments show a continuous evolution of medium-range order in films deposited with increasing substrate temperature from the amorphous to polycrystalline regimes, which is counter to the belief that this structural transition is a discontinuous order-disorder phase transition. In the paracrystalline model, this increase is caused by the topologically crystalline grains growing, or occupying a greater volume fraction, or both. Experiments also show that hydrogenated amorphous silicon deposited by a variety of methods shares the paracrystalline structure. The medium-range order of hydrogenated amorphous silicon is affected by exposure to visible-spectrum white light. Films deposited by different methods have different responses, which may be connected to differences in the creation of metastable electrical defects known as the Staebler-Wronski effect.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.