Topological fluid mechanics of point vortex motions
Boyland, Philip L.; Stremler, Mark A.; Aref, Hassan
Loading…
Permalink
https://hdl.handle.net/2142/279
Description
Title
Topological fluid mechanics of point vortex motions
Author(s)
Boyland, Philip L.
Stremler, Mark A.
Aref, Hassan
Issue Date
2002-10
Keyword(s)
vortex dynamics
Abstract
Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. Restricting to three vortices with zero net circulation, the symmetries are used to reduce each system to a one-degree-of-freedom Hamiltonian. The phase portrait of the reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston–Nielsen theory is then used to analyze these isotopy classes, and in certain cases strong implications about the chaotic dynamics of the advection can be drawn. This points to an important mechanism by which the topological kinematics of large-scale, two-dimensional fluid motions generate chaotic advection.
Publisher
Department of Theoretical and Applied Mechanics (UIUC)
TAM technical reports include manuscripts intended for publication, theses judged to have general interest, notes prepared for short courses, symposia compiled from outstanding undergraduate projects, and reports prepared for research-sponsoring agencies.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.