Effect of turbulence on the drag and lift of a particle
Bagchi, Prosenjit; Balachandar, S.
Loading…
Permalink
https://hdl.handle.net/2142/277
Description
Title
Effect of turbulence on the drag and lift of a particle
Author(s)
Bagchi, Prosenjit
Balachandar, S.
Issue Date
2002-10
Keyword(s)
computational fluid dynamics
convection
flow instability
geophysical fluid dynamics
multiphase flows
particulate flows
turbulence physics
vortex dynamics
Abstract
A direct numerical simulation (DNS) is used to study the effect of a freestream isotropic turbulent flow on the drag and lift forces on a spherical particle. The particle diameter is about 1.5 to 10 times the Kolmogorov scale, the particle Reynolds number is about 60 to 600, and the freestream turbulence intensity is about 10 to 25%. It is shown that the freestream turbulence does not have a substantial and systematic effect on the time-averaged mean drag. The standard drag correlation based on the instantaneous or mean slip velocity results in a reasonably accurate prediction of the mean drag obtained from the DNS. However, the accuracy of prediction of the instantaneous drag decreases with increasing particle size. For the smaller particles, the low frequency oscillations in the DNS drag are well captured by the standard drag, but for the larger particles significant differences exist even for the low frequency components. Inclusion of the added-mass and history forces, computed based on the fluid velocity at the center of the particle, does not improve the prediction. Different estimates of the fluid velocity seen by the particle are examined. It is shown that the mean drag is insensitive to the fluid velocity measured at the particle center, or obtained by averaging over a fluid volume of the order of the particle size. The fluctuations diminish as the size of the averaging volume increases. The effect of increasing freestream turbulence intensity for the same particle size is studied. Fluctuations in the drag and lift forces are shown to scale with the mean drag and freestream intensity. The standard drag without the added-mass and history forces provides the best approximation to the DNS result.
Publisher
Department of Theoretical and Applied Mechanics (UIUC)
TAM technical reports include manuscripts intended for publication, theses judged to have general interest, notes prepared for short courses, symposia compiled from outstanding undergraduate projects, and reports prepared for research-sponsoring agencies.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.