Withdraw
Loading…
Problems in extremal combinatorics
Kim, Youn-Jin
Loading…
Permalink
https://hdl.handle.net/2142/29436
Description
- Title
- Problems in extremal combinatorics
- Author(s)
- Kim, Youn-Jin
- Issue Date
- 2012-02-01T00:46:19Z
- Director of Research (if dissertation) or Advisor (if thesis)
- Furedi, Zoltan
- Doctoral Committee Chair(s)
- Kostochka, Alexandr V.
- Committee Member(s)
- Furedi, Zoltan
- West, Douglas B.
- Balogh, József
- Department of Study
- Mathematics
- Discipline
- Mathematics
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- graphs
- cycles
- extremal graphs
- minimal saturated graphs
- diameter
- random graphs
- set families
- boolean algebras
- Abstract
- We consider a variety of problems in extremal graph and set theory. Given a property $\Gamma$ and a family of sets ${\mathcal F}$, let $f({\mathcal F},\Gamma)$ be the size of the largest subfamily of ${\mathcal F}$ having property $\Gamma$. Let $f(m,\Gamma)$ be the minimum of $f({\mathcal F},\Gamma)$ over all families of size $m$ where $m$ is a positive integer. A family $\mathcal{F}$ is {\it $B_d$-free} if it has no subfamily $\mathcal{F}'=\{F_I: I \subseteq [d]\}$ of $2^d$ distinct sets such that for every $I,J \subseteq [d]$, both $F_I \cup F_J=F_{I \cup J}$ and $F_I \cap F_J = F_{I \cap J}$ hold. A family $\mathcal{F}$ is $a$-{\it union-free} if $F_1\cup \dots \cup F_a \neq F_{a+1}$ whenever $F_1,\dots,F_{a+1}$ are distinct sets in $\mathcal{F}$. We prove a conjecture of Erd\H os and Shelah that $f(m, B_2\text{\rm -free})=\Theta(m^{2/3})$. We also obtain lower and upper bounds for $f(m, B_d\text{\rm -free})$ and $f(m,a\text{\rm -union-free})$. A graph $G$ is {\it $F$-saturated } if it does not contain $F$ as a subgraph but the addition of any new edge creates at least one copy of $F$ in $G$. We focus on finding the minimum size of an $n$-vertex $F$-saturated graph, denoted by $\sat(n,F)$. We prove $ \sat(n,C_k) = n + \frac{n}{k} + O((\frac{n}{k^2}) + k^2)$ for all $n\geq k\geq 3$, where $C_k$ is a cycle with length $k$. We conjecture that our three constructions are optimal. We obtain the exact asymptotics for the number of $n$-vertex graphs of diameter $d$, extending earlier results to hold for almost all $d$ and $n$. Additionally, we find the typical structure of almost all $n$-vertex graphs with diameter of at least $d$. In the case $d < n - c_1 \log n$, the typical graph of diameter $d$ consists of an induced path of length $d$ and a highly connected block of order $n-d+3$. In the case $d > n - c_2 \log n$, the typical graph has a completely different snake-like structure. We also extend the results to random graphs of diameter $d$ with edge probability $p$.
- Graduation Semester
- 2011-12
- Permalink
- http://hdl.handle.net/2142/29436
- Copyright and License Information
- Copyright 2011 Younjin Kim
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…