Penetration of supernova radioactivities in the solar system
Athanassiadou, Themis
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/27743
Description
Title
Penetration of supernova radioactivities in the solar system
Author(s)
Athanassiadou, Themis
Issue Date
2009
Director of Research (if dissertation) or Advisor (if thesis)
Fields, Brian D.
Department of Study
Physics
Discipline
Physics
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
supernova
solar system
Language
en
Abstract
"We investigate the mechanism by which supernova ejecta can penetrate the solar system, and in particular, directly deposit live radioactivities on Earth. This study is motivated by the discovery of live undersea 60Fe from an event 2.8 Myr ago. The 60Fe signal is consistent with a nearby supernova explosion - occuring within a few tens of parsecs from the solar system. We present the first numerical hydrodynamic simulation of the interaction between a supernova blast and the solar wind, using the FLASH code. We find that the supernova ejecta can penetrate the solar system within the orbit of the Earth if the supernova explosion is within 10pe of the Sun. Since 10 pc marks the nominal ""kill radius"" within which biosphere damage is severe and could lead to species extinction events, the absence of paleontological evidence of such an extinction coeval with the 6°Fe deposition leads us to consider a more subtle mechanism of ejecta delivery. There exists evidence that the vast majority of heavy elements in a supernova remnant may be depleted onto grains, hence they can be considered as charged particles which do not participate in the plasma dynamics of the interaction of the supernova plasma and the solar wind. We examine the motion of these charged particles as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation and gravitational field. We find that given the large incoming velocities of the charged grains, they suffer little or no deflection within the solar system. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability, and the dust capture onto the Earth should have a geometric cross section."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.