Characterization of the Performance Variation for Regular Standard Cells with Process Non-idealities
Du, Yuelin
Loading…
Permalink
https://hdl.handle.net/2142/24335
Description
Title
Characterization of the Performance Variation for Regular Standard Cells with Process Non-idealities
Author(s)
Du, Yuelin
Issue Date
2011-05-25T14:57:04Z
Director of Research (if dissertation) or Advisor (if thesis)
Wong, Martin D.F.
Department of Study
Electrical & Computer Eng
Discipline
Electrical & Computer Engr
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
M.S.
Degree Level
Thesis
Keyword(s)
1-D Patterning
Dense Line Printing
Standard Cell Characterization
Abstract
In IC manufacturing, the performance of standard cells often varies due to process non-idealities. Some research work on 2-D cell characterization shows that the timing variations can be characterized by the timing model. However, as regular design rules become necessary in sub-45 nm node circuit design, 1-D design has shown its advantages and has drawn intensive research interest. The circuit performance of a 1-D standard cell can be more accurately predicted than that of a 2-D standard cell as it is insensitive to layout context. This thesis presents a characterization methodology to predict the delay and power performance of 1-D standard cells. We perform lithography simulation on the poly gate array generated by dense line printing technology, which constructs the poly gates of inverters, and do statistical analysis on the data simulated within the process window. After that, circuit simulation is performed on the printed cell to obtain its delay and power performance, and the delay and power distribution curves are generated, which accurately predict the circuit performance of standard cells. In the end, the benefits of our cell characterization method are analyzed from both design and manufacturing perspectives, which shows great advantages in accurate circuit analysis and improving yield.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.