Withdraw
Loading…
Study and development of label-free optical biosensors for biomedical applications
Choi, Charles J.
Loading…
Permalink
https://hdl.handle.net/2142/24435
Description
- Title
- Study and development of label-free optical biosensors for biomedical applications
- Author(s)
- Choi, Charles J.
- Issue Date
- 2011-05-25T14:36:27Z
- Director of Research (if dissertation) or Advisor (if thesis)
- Cunningham, Brian T.
- Doctoral Committee Chair(s)
- Cunningham, Brian T.
- Committee Member(s)
- Bashir, Rashid
- Kenis, Paul J.A.
- Liu, Gang Logan
- Department of Study
- Electrical & Computer Eng
- Discipline
- Electrical & Computer Engr
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Label-free biosensor
- Biomedical transducers
- Nanoreplica molding Photonic crystal
- Raman spectroscopy
- Surface-enhanced Raman scattering (SERS)
- Nanodome array
- Microfluidics
- Abstract
- For the majority of assays currently performed, fluorescent or colorimetric chemical labels are commonly attached to the molecules under study so that they may be readily visualized. The methods of using labels to track biomolecular binding events are very sensitive and effective, and are employed as standardized assay protocol across research labs worldwide. However, using labels induces experimental uncertainties due to the effect of the label on molecular conformation, active binding sites, or inability to find an appropriate label that functions equivalently for all molecules in an experiment. Therefore, the ability to perform highly sensitive biochemical detection without the use of fluorescent labels would further simplify assay protocols and would provide quantitative kinetic data, while removing experimental artifacts from fluorescent quenching, shelf-life, and background fluorescence phenomena. In view of the advantages mentioned above, the study and development of optical label-free sensor technologies have been undertaken here. In general, label-free photonic crystal (PC) biosensors and metal nanodome array surface-enhanced Raman scattering (SERS) substrates, both of which are fabricated by nanoreplica molding process, have been used as the method to attack the problem. Chapter 1 shows the work on PC label-free biosensor incorporated microfluidic network for bioassay performance enhancement and kinetic reaction rate constant determination. Chapter 2 describes the work on theoretical and experimental comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Chapter 3 shows the work on integration of PC biosensor with actuate-to-open valve microfluidic chip for pL-volume combinatorial mixing and screening application. In Chapter 4, the development and characterization of SERS nanodome array is shown. Lastly, Chapter 5 describes SERS nanodome sensor incorporated tubing for point-of-care monitoring of intravenous drugs and metabolites.
- Graduation Semester
- 2011-05
- Permalink
- http://hdl.handle.net/2142/24435
- Copyright and License Information
- Copyright 2011 Charles J. Choi
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Electrical and Computer Engineering
Dissertations and Theses in Electrical and Computer EngineeringManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…