Withdraw
Loading…
Nuclear magnetic resonance studies of yttrium barium copper oxide in the superconducting state
Barrett, Sean Eric
Loading…
Permalink
https://hdl.handle.net/2142/22911
Description
- Title
- Nuclear magnetic resonance studies of yttrium barium copper oxide in the superconducting state
- Author(s)
- Barrett, Sean Eric
- Issue Date
- 1992
- Doctoral Committee Chair(s)
- Slichter, C.P.
- Department of Study
- Physics
- Discipline
- Physics
- Degree Granting Institution
- University of Illinois at Urbana-Champaign
- Degree Name
- Ph.D.
- Degree Level
- Dissertation
- Keyword(s)
- Physics, Condensed Matter
- Language
- eng
- Abstract
- In this thesis we report measurements of the $\sp{63}$Cu Knight shift in the superconducting state for the plane (Cu(2)) and chain (Cu(1)) sites in YBa$\sb2$Cu$\sb3$O$\sb7$. We also have measured the temperature and field dependent $\sp{63}$Cu(2) nuclear spin relaxation rates ($\sp{63}$W1$\alpha$) in the superconducting state.
- Our determination of the $\sp{63}$Cu Knight shift below T$\sb{\rm c}$ compensated for the diamagnetic shielding of our sample by using $\sp{89}$Y NMR as an internal field marker. The $\sp{89}$Y resonance was observed in the superconducting state using the Carr-Purcell-Meiboom-Gill pulse sequence to enhance the signal-to-noise ratio.
- We have interpreted our Knight shift data within a generalized Bardeen-Cooper-Schrieffer (BCS) pairing theory, and find that a spin-singlet pairing state is strongly favored by these data. The data are consistent with either an orbital s-wave or an orbital d-wave pairing state. While we can fit the Cu(2) data with a strong coupling energy gap, the Cu(1) data require a weak coupling gap.
- During our measurements of the temperature dependence of the Cu(2) spin-lattice relaxation rates in the superconducting state ($\sp{63}$W1$\alpha$, where $\rm\vec Ho\vert~\vert\\alpha$), we discovered that the anisotropy ratio $\sp{63}$W1a/$\sp{63}$W1c, which was essentially independent of temperature in the normal state, drops sharply just below T$\sb{\rm c}$(77 K $<$ T $<$ Tc). The data which we have measured in the smallest fields possible (Ho $<$ 4.5 kGauss) show that as the temperature is lowered below T $\sim$ 77 K the anisotropy ratio $\sp{63}$W1a/$\sp{63}$W1c starts to increase, eventually exceeding the normal state anisotropy ratio. These low field data have been interpreted by several groups in terms of a generalized BCS pairing state. These groups successfully fit our data assuming a spin-singlet, orbital d-wave pairing state, but are unable to fit our data assuming a spin-singlet, orbital s-wave pairing state.
- The application of magnetic field which penetrates the CuO$\sb2$ planes produces a sizeable linear dependence of the relaxation rate ($\sp{63}$W1c) upon the field below Tc.
- Type of Resource
- text
- Permalink
- http://hdl.handle.net/2142/22911
- Copyright and License Information
- Copyright 1992 Barrett, Sean Eric
Owning Collections
Graduate Dissertations and Theses at Illinois PRIMARY
Graduate Theses and Dissertations at IllinoisDissertations and Theses - Physics
Dissertations in PhysicsManage Files
Loading…
Edit Collection Membership
Loading…
Edit Metadata
Loading…
Edit Properties
Loading…
Embargoes
Loading…