Automated design of knowledge-lean heuristics: Learning, resource scheduling, and generalization
Ieumwananonthachai, Arthur
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/22817
Description
Title
Automated design of knowledge-lean heuristics: Learning, resource scheduling, and generalization
Author(s)
Ieumwananonthachai, Arthur
Issue Date
1996
Doctoral Committee Chair(s)
Wah, Benjamin W.
Department of Study
Electrical and Computer Engineering
Discipline
Electrical and Computer Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Artificial Intelligence
Computer Science
Language
eng
Abstract
In this thesis we present new methods for the automated design of new heuristics in knowledge-lean applications and for finding heuristics that can be generalized to unlearned test cases. These applications lack domain knowledge for credit assignment; hence, operators for composing new heuristics are generally model free, domain independent, and syntactic in nature. The operators we have used are genetics based; examples of which include mutation and crossover. Learning is based on a generate-and-test paradigm that maintains a pool of competing heuristics, tests them to a limited extent, creates new ones from those that perform well in the past, and prunes poor ones from the pool. We have studied four important issues in learning better heuristics: (a) partitioning of a problem domain into smaller subsets, called subdomains, so that performance values within each subdomain can be evaluated statistically, (b) anomalies in performance evaluation within a subdomain, (c) rational scheduling of limited computational resources in testing candidate heuristics in single-objective as well as multi-objective learning, and (d) finding heuristics that can be generalized to unlearned sub domains.
We show experimental results in learning better heuristics for (a) process placement for distributed-memory multicomputers, (b) node decomposition in a branch-and-bound search, (c) generation of test patterns in VLSI circuit testing, (d) VLSI cell placement and routing, and (e) blind equalization.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.