This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/22749
Description
Title
Topics in extremal graph theory
Author(s)
Chung, Myung Sook
Issue Date
1993
Doctoral Committee Chair(s)
West, Douglas B.
Department of Study
Mathematics
Discipline
Mathematics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Mathematics
Language
eng
Abstract
New results are proved on several problems in extremal graph theory.
Let $ex\sp*(D;H)$ denote the maximum number of edges in a connected graph with maximum degree D and no induced subgraph isomorphic to the graph H. It is shown that this is finite if and only if H is a disjoint union of paths. Several specific forbidden subgraphs H have been studied, and the following results have been proved:
(1) $ ex\sp*(D;P\sb4) = D\sp2$ for all D, uniquely achieved by $K\sb{D,D}.$ If, in addition, the maximum clique size is $\omega$, then the number of edges is at most $D\sp2 - {D(\omega-2)\over 2}.$
(4) $ex\sp*(D;P\sb3 + P\sb2)< 2D\sp2.$ If $K\sb3$ is also forbidden, then $ex\sp*(D;P\sb3 + P\sb2, K\sb3) = {5\over 4}D\sp2 + O(D).$
The p-intersection number of a graph G, denoted by $\theta\sb{p}(G),$ is the minimum size of a set $\cup\sb{v\in V(G)}S\sb{v}$ such that u and v are adjacent if and only if $\vert S\sb{u}\cup S\sb{v}\vert \ge p.$ It is proved here that $\theta\sb{p}(K\sb{n,n})\ge (n\sp2 + (2p - 1)n)/p$ for $p\ge 2.$ Furthermore, $\theta\sb2(K\sb{n,n}) = (n\sp2 + 3n)/2$ is achieved using a graph design called orthogonal double covering. For sufficiently large p, the residual intersection number, denoted by $\theta\sp*(G),$ is defined and studied here as the limiting value of $f\sb{p}(G) = \theta\sb{p}(G)-p.$ The maximum values of n such that $\theta\sp*(K\sb{2,n}) = 5,6$ and 7 are 4, 7, and 14, respectively. Asymptotically, $\theta\sp*(K\sb{2,n}) = \log\sb2 n + o(\log\sb2 n).$
An $(n,m,r)$-rainbow-free coloring is a multi-edge-coloring of edges in $K\sb{n}$ with at most m colors such that the edges of each color form a clique and it is not possible to choose distinct colors for each edge in any r-cycle. The maximum value of the sum of the numbers of colors appearing on each edge over all $(n,m,r)$-rainbow-free colorings, denoted by $e(n,m,r),$ was originally investigated by S. Roman. The bounds he demonstrated have been improved upon in this thesis. It is shown that $e(n,m,3) = 2{n-1\choose 2} + m - 1,$ and that $e(n,m,4)\le 3{n\choose 2} + m.$
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.