An approach for the separation of voices in composite musical signals
Maher, Robert Crawford
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/22345
Description
Title
An approach for the separation of voices in composite musical signals
Author(s)
Maher, Robert Crawford
Issue Date
1989
Doctoral Committee Chair(s)
Beauchamp, James W.
Department of Study
Music
Electrical and Computer Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Music
Engineering, Electronics and Electrical
Physics, Acoustics
Language
eng
Abstract
"The simultaneous presentation of several sound sources in a performance setting is fundamental to most music. Ensemble musical signals consist of superpositions of multiple distinct sonic events which may or may not be synchronized in time, frequency, and/or amplitude. Once the distinct events are combined and recorded in a storage medium, e.g., a digital recording, the composite signal is often unsatisfactory in some way: the recording might suffer from poor ensemble balance, performance errors, or corruption from undesired background audience noises (sneezing, talking, etc.). Although it often might be helpful to process the constituent signals independently, separating the composite signal into its parts is a nontrivial task. The research reported here considers particular aspects of the separation problem: analysis, identification, tracking, and resynthesis of a specified voice from a digital recording of a musical duet setting. Analysis is accomplished out of real-time using a quasi-harmonic, sinusoidal representation of the constituent signals, based on short-time Fourier transform (STFT) methods. The procedure is evaluated via resynthesis of a ""desired"" signal from the composite analysis and tracking data. Other applications include signal restoration, digital editing and splicing, musique concrete, noise reduction, and time-scale compression/expansion. This material is based upon work supported, in part, under a National Science Foundation Graduate Fellowship. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation."
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.