Studies and applications of molecular beam epitaxy
Matheny, Annette M.
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/22051
Description
Title
Studies and applications of molecular beam epitaxy
Author(s)
Matheny, Annette M.
Issue Date
1992
Doctoral Committee Chair(s)
Flynn, C.P.
Department of Study
Physics
Discipline
Physics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physics, Condensed Matter
Language
eng
Abstract
Single crystal Nb samples have been prepared with stepped surfaces to investigate the effect of surface steps on nucleation and growth in molecular beam epitaxy (MBE). Studies of the critical temperature between two-dimensional and three-dimensional growth are completed by means of reflection high energy diffraction. These critical temperatures are observed to depend on the density of surfaces steps as well as the deposition rate. A perturbed step-flow-growth model is formulated and applied to the results to determine a critical cluster size for growth. The analysis reveals that the growth is dominated by mobility changes associated with the formation of adatom pairs, and that the densities of adatoms on the terraces at such critical conditions are typically as low as 10$\sp{-3}.$ Activation energies for surface diffusion and cluster binding energies are determined.
In addition to the experiments on growth and nucleation, studies of Dy/Lu superlattices, Dy/Lu and Er/Lu films synthesized by methods of MBE are undertaken. These experiments investigate the effect of epitaxial strain, in particular compression, on the magnetic properties of rare earth metals. The structural and magnetic properties are characterized using x-ray diffraction analysis, bulk magnetization measurement and elastic neutron scattering method. Long range magnetic order is observed in the Dy/Lu superlattices probably owing to an RKKY-like exchange mechanism. The rare earth metal samples exhibit ferromagnetic transitions at temperatures that are very enhanced seen over that seen in bulk. This behavior is the opposite of that reported for Dy/Y and Er/Y samples studied in previous experiments. In these systems the ferromagnetic transition is completely suppressed. The difference is undoubtedly caused by the opposite types of epitaxial strain in these two cases.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.