This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21821
Description
Title
Static response of cord composite plates
Author(s)
Kittredge, Carol Ann
Issue Date
1991
Doctoral Committee Chair(s)
Costello, George A.
Department of Study
Mechanical Science and Engineering
Discipline
Theoretical and Applied Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Language
eng
Abstract
Wire rope reinforced composites have many technologically important applications. These composites are used in automobile tires, conveyer belts, and various military components. This particular combination of materials is especially effective when the composite material needs to be strong in tension in a particular direction, but also needs to be flexible and bend easily out-of-plane.
These composites are typically treated using classical lamination theory, where the unidirectional lamina is considered to be orthotropic. However, the internal structure of the wire rope couples the extensional and twisting modes, even in the unidirectional case. Two new theories, an equilibrium based plate element model and an energy method model are developed to include this coupling. The energy method model development is extended to incorporate Kirchhoff, linear shear, or cubic shear plate theories. These models are used to investigate the global response of one-layer and two-layer plates as a function of cord angle and cord volume fraction. These results are compared to the results of classical orthotropic lamination theory to evaluate the suitability of the various theories to these composites.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.