The effects of precipitation and river runoff anomalies in a coupled ice-ocean model of the Arctic
Weatherly, John Wallace
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21608
Description
Title
The effects of precipitation and river runoff anomalies in a coupled ice-ocean model of the Arctic
Author(s)
Weatherly, John Wallace
Issue Date
1994
Doctoral Committee Chair(s)
Walsh, John E.
Department of Study
Atmospheric Sciences
Discipline
Atmospheric Sciences
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Physical Geography
Physical Oceanography
Physics, Atmospheric Science
Language
eng
Abstract
A coupled ice-ocean model of the Arctic Ocean and adjacent seas is developed in order to study the effects of anomalies of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulence closure scheme for the treatment of stability-dependent vertical mixing of temperature, salinity, and momentum. The ice and ocean models are coupled by the fluxes of heat, momentum, and salinity computed from the predicted ice and ocean temperatures, velocities, and net ice growth. The model is forced by interannually-varying atmospheric temperature and pressure data from 1980-1989, parameterized incoming radiation, and hydrologic forcing from precipitation and river runoffs. The modeled ice thickness, ice extent, and ice drift are generally similar to observed patterns, with a bias toward thinner ice and some regional differences in extent, which reduces the export of ice out of the Arctic. The ice extent is shown to be sensitive to the ocean heat flux computed in the model. Ice thickness and sea surface salinity are shown to be very sensitive to how the vertical mixing scheme in the ocean maintains the strong stratification. Sensitivity experiments show that without any precipitation input, sea ice thickness decreases rapidly because of the destabilization of the upper ocean. Eliminating the river runoffs causes a much slower decreasing trend in ice thickness, due to the decadal timescale of the dispersal of runoff in the Arctic Ocean. Interannual precipitation anomalies are shown to create anomalies of ice thickness that last 1-2 years, while runoff anomalies do not produce significant ice anomalies. The ice-ocean model results suggest that changes in arctic precipitation can affect sea ice more rapidly and more significantly than river runoffs, although rivers contribute the greater volume of fresh water to the Arctic, and that river runoffs can affect the sea ice on the timescale of a decade.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.