Thermal non-Newtonian elastohydrodynamic lubrication of line contacts under sliding-rolling and simple sliding conditions
Wang, Shao
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21425
Description
Title
Thermal non-Newtonian elastohydrodynamic lubrication of line contacts under sliding-rolling and simple sliding conditions
Author(s)
Wang, Shao
Issue Date
1991
Doctoral Committee Chair(s)
Cusano, Cristino
Department of Study
Mechanical Science and Engineering
Discipline
Mechanical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Engineering, Mechanical
Language
eng
Abstract
A thermal Reynolds-Eyring equation is derived to study the elastohydrodynamic lubrication of line contacts. This lubrication condition is usually found in spur gears, roller bearings and cams. The inlet region with back-flow is treated with a control volume scheme to obtain the temperature solution. A computationally-simple formulation for the stationary surface temperature is developed for simple sliding conditions. The most influential dimensionless groups are identified from the complete sets of dimensionless groups. Numerical results obtained for sliding and rolling and for simple sliding conditions are used to develop formulas for the thermal and non-Newtonian (Ree-Eyring) film thickness reduction factor. Even when thermal effects are small, these formulas can still give a film thickness reduction due to the non-Newtonian effects. Results for the maximum temperatures and traction coefficient are also presented. The pressure dependence of lubricant thermal conductivity is found to significantly affect the maximum lubricant temperature. The thermal effects on film thickness and traction are found to be more pronounced for simple sliding than for combined sliding and rolling conditions. Under simple sliding, the heat transferred to the stationary surface is found to be very small compared to that transferred to the moving surface and lubricating fluid.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.