An experimental investigation of homogeneous fatigue damage in a random short-fiber composite under combined tension-torsion loading
Dasgupta, Abhijit
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21403
Description
Title
An experimental investigation of homogeneous fatigue damage in a random short-fiber composite under combined tension-torsion loading
Author(s)
Dasgupta, Abhijit
Issue Date
1989
Doctoral Committee Chair(s)
Wang, S.S.
Department of Study
Mechanical Science and Engineering
Discipline
Applied and Theoretical Mechanics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Applied Mechanics
Engineering, Mechanical
Language
eng
Abstract
An experimental study is conducted to examine the effects of the state of stress on the fundamental nature of distributed fatigue damage in a random short fiber composite. The project consists of two different tasks: first, to develop a new experimental method, for conducting combined shear and axial fatigue damage in composites which are difficult to fabricate in axisymmetric configurations; and second, to study the evolution of the multiaxial fatigue damage in the material. A sandwich specimen, consisting of SMC composite skins bonded to an aluminum honeycomb core, is proposed. Anisotropic finite element analyses are used to obtain detailed stress and deformation fields in the composite facing and in the core of specimens with optimum geometry. The macroscopic fatigue damage is defined and measured as the relative change in the elastic stiffness tensor of the composite. Multiaxial extensometry is developed for strain measurements, and an approximate analytical technique is evolved for online prediction of the multiaxial stress state in the damaged material. Measurements of residual modulus are conducted, after multiaxial fatiguing, to provide additional information on the residual stiffness of the composite. The magnitude and rate of stiffness degradation are found to depend not only on the level of stress but also on the state of stress. Combined stress states are found to be particularly detrimental to the degradation rate of shear modulus. Microscopic damage parameters such as crack length distribution and crack orientation distribution are monitored through non-destructive replication and subsequent quantitative microscopy techniques.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.