Investigation of tapered multiple microstrip lines for VLSI circuits
Mehalic, Mark Andrew
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21309
Description
Title
Investigation of tapered multiple microstrip lines for VLSI circuits
Author(s)
Mehalic, Mark Andrew
Issue Date
1989
Doctoral Committee Chair(s)
Mittra, Raj
Department of Study
Electrical and Computer Engineering
Discipline
Electrical Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Computer Science
Language
eng
Abstract
Tapered, coupled, microstrip transmission lines are an increasingly important part of high-speed digital circuits. These lines, used as interconnects between integrated circuit devices, are modeled using an iteration-perturbation approach applied in the spatial domain. The approach is used first to solve the static problem, and then to iterate on the static solution to obtain the charge and current distributions on the lines at different frequencies. From this model, a frequency-dependent scattering parameter characterization is determined. Results for typical geometries are presented and are compared with those published by other authors.
A time-domain simulation of pulse propagation through the tapered, coupled, microstrip lines is performed. The frequency-domain scattering parameters are inverse Fourier transformed to obtain the time-domain Green's function. The input pulse is convolved with the Green's function, and a Newton-Raphson algorithm is applied to account for nonlinear loads. Good agreement is found with other published results.
Finally, some experimental results are shown and an equivalent circuit is proposed. The experimental results verify the model, while the equivalent circuit allows the time-domain simulation to be performed in less time with a negligible loss in accuracy. Results show that the equivalent circuit gives essentially the same time-domain response in about one-tenth of the simulation time.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.