Growth and electronic properties of gallium arsenide and germanium metal insulator semiconductor structures
Reed, John Charles
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21134
Description
Title
Growth and electronic properties of gallium arsenide and germanium metal insulator semiconductor structures
Author(s)
Reed, John Charles
Issue Date
1994
Doctoral Committee Chair(s)
Morkoc, Hadis
Department of Study
Physics
Discipline
Physics
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Electronics and Electrical
Physics, Electricity and Magnetism
Physics, Condensed Matter
Language
eng
Abstract
The metal insulator semiconductor (MIS) structure is arguably the most technologically important type of solid in existence. The microelectronics revolution of the last thirty years is made possible largely due to the ability to realize extremely high quality metal/SiO$\sb2$/Si metal oxide semiconductor (MOS) structures. Unfortunately, silicon does not stand out in its ability to pass charge carriers with the highest speed. Significant improvements in the performance of many areas of electronics would result if another, high mobility semiconductor could be implemented into a high quality MIS structure.
In this thesis, MIS structures incorporating two high-mobility semiconductors, GaAs and Ge, are investigated. An in situ, plasma-enhanced chemical vapor deposition system has been constructed which allows deposition of Si-based insulators and group IV semiconductors on the pristine GaAs or Ge surface.
For the GaAs MIS system, a thin Si/Ge interlayer between the insulator and GaAs surface is found to improve the insulator/GaAs interface. This has allowed the realization of high transconductance GaAs metal insulator semiconductor field effect transistors (MISFETs).
For the Ge MIS system, the growth of Ge on GaAs at 250$\sp\circ$C while maintaining a low interface trap density at the insulator/Ge interface is shown to be possible. The high hole mobility of Ge and high electron mobility of GaAs suggest possible uses of this structure for high performance complementary metal insulator semiconductor (CMIS) applications.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.