This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/21052
Description
Title
Performance observability
Author(s)
Malony, Allen Davis
Issue Date
1990
Doctoral Committee Chair(s)
Reed, Daniel
Department of Study
Computer Science
Discipline
Computer Science
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Computer Science
Language
eng
Abstract
Performance observability is the ability to accurately capture, analyze, and present (collectively observe) information about the performance of a computer system. Advances in computer systems design, particularly with respect to parallel processing and supercomputers, have brought a crisis in performance observation--computer systems technology is outpacing the tools to understand the performance behavior of and to operate the machines near the high-end of their performance range. In this thesis, we study the performance observability problem with emphasis on the practical design, development, and use of tools for performance measurement, analysis, and visualization.
Tools for performance observability must balance the need for performance data against the cost of obtaining it (environment complexity and performance intrusion)--too little performance data makes performance analysis difficult; too much data perturbs the measured system. We discuss several methods for performance measurement concentrating specifically on mechanisms for timing and tracing. We show how minor hardware and software modifications can enable better measurement tools to be built and describe results from a prototype hardware-based software monitor developed for the Intel iPSC/2 multiprocessor.
Any software performance measurement perturbs the measured system. We develop two models of performance perturbation to understand the effects of instrumentation intrusion: time-based and event-based. The time-based models use only measured time overheads of instrumentation to approximate actual execution time performance. We show that this model can give accurate approximations for sequential execution and for parallel execution with independent execution ordering. We use the event-based model to quantity the perturbation effects of instrumentations of parallel executions with ordering dependencies. Our results show that this model can be applied in practice to achieve accurate approximations. We also discuss the limitations of the time-based and event-based models.
The potentially large volume of detailed performance data requires new approaches to presentation that can show both gross performance characteristics while allowing users to focus on local performance behavior. We give several examples where performance visualization techniques have been effectively applied, plus discuss the architecture and a prototype of a general performance visualization environment.
Finally, we apply several of the performance measurement, analysis, and visualization techniques to a practical study of performance observability on the Cray X-MP and Cray 2 supercomputers. Our results show that even modest improvements in the existing set of performance tools for a particular machine can have significant benefits in performance evaluation capabilities.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.