Calcium-dependent changes of apical membrane sodium channel density and open probability in frog skin
Kizer, Neil Lavern
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/20916
Description
Title
Calcium-dependent changes of apical membrane sodium channel density and open probability in frog skin
Author(s)
Kizer, Neil Lavern
Issue Date
1990
Doctoral Committee Chair(s)
Helman, Sandy I.
Department of Study
Molecular and Integrative Physiology
Discipline
Physiology
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Biology, Animal Physiology
Language
eng
Abstract
Blocker-induced noise analysis of Na$\sp{+}$ channels at apical membranes of intact and isolated epithelia of frog skin was carried out to investigate whether treatment of tissues with ionomycin, quinine, or acidification of basolateral solution shared similar mechanisms of inhibition of Na$\sp{+}$ absorption. Experiments were done using staircase protocols (SC) that allowed evaluation of the dependence on blocker concentration of the macroscopic rates of Na$\sp{+}$ transport I$\sbsp{\rm Na}{\rm B}$, single channel Na$\sp{+}$ current (i$\sbsp{\rm Na}{\rm B}$), on and off blocker rate coefficients as well as determination of channel densities in open and blocked states and the Na$\sp{+}$ channel open probability in the absence of blocker ($\beta\sp\prime$). In addition to SC experiments, time course (TC) or paired time course (PTC) experiments allowed an assessment of the rates of change of the blocker rate coefficients and the changes of I$\sbsp{\rm Na}{\rm B}$, i$\sbsp{\rm Na}{\rm B}$, and the channel densities. Ionomycin, quinine, and acidification of the basolateral solution, despite their differing methods of increase of cytosolic Ca$\sp{++}$ activity, caused in common inhibition of total channel density (N$\sb{\rm T}$) and stimulation of open channel density (N$\sb{\rm o}$) by way of increase of open channel probability ($\beta\sp\prime$). Time course experiments revealed that inhibition of N$\sb{\rm T}$ and stimulation of $\beta\sp\prime$ were delayed by several minutes, with relatively large changes of N$\sb{\rm T}$ and $\beta\sp\prime$ occurring over 30 to 60 minutes. These observations support the view that Ca$\sp{++}$-related mechanisms of regulation of N$\sb{\rm T}$ and $\beta\sp\prime$ are slow with respect to reported rates of increase of intracellular Ca$\sp{++}$ and are thus incompatible with a direct effect of Ca$\sp{++}$ on the epithelial Na$\sp{+}$ channel.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.