This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/20522
Description
Title
Theoretical transport model for tokamaks
Author(s)
Ghanem, Elsayed Mohammad
Issue Date
1991
Doctoral Committee Chair(s)
Singer, Clifford E.
Department of Study
Nuclear, Plasma, and Radiological Engineering
Discipline
Nuclear Engineering
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Engineering, Nuclear
Physics, Fluid and Plasma
Language
eng
Abstract
In the present thesis work a theoretical transport model is suggested to study the anomalous transport of plasma particles and energy across the axisymmetric equilibrium toroidal magnetic flux surfaces in tokamaks. The model suggests a linear combination of two transport mechanisms; drift waves, which dominate the transport in the core region, and resistive ballooning modes, which dominate the transport in the edge region. The resulting unified model has been used in a predictive transport code to simulate the plasma transport in different tokamak experiments operating in both the ohmic heating phase and the low confinement mode (L-mode).
For ohmic plasma, the model was used to study the saturation of energy confinement time at high plasma density. The effect of the resistive ballooning mode as a possible cause of the saturation phenomena has been investigated together with the effect of the ion temperature gradient mode.
For the low confinement mode plasmas, the study has emphasized on using the model to obtain a scaling law for the energy confinement time with the various plasma parameters compared to the scaling laws that are derived based on fitting the experimental data.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.