Freezing avoidance and the presence of ice in shallow water Antarctic fishes
Tien, Raymond
This item is only available for download by members of the University of Illinois community. Students, faculty, and staff at the U of I may log in with your NetID and password to view the item. If you are trying to access an Illinois-restricted dissertation or thesis, you can request a copy through your library's Inter-Library Loan office or purchase a copy directly from ProQuest.
Permalink
https://hdl.handle.net/2142/20279
Description
Title
Freezing avoidance and the presence of ice in shallow water Antarctic fishes
Author(s)
Tien, Raymond
Issue Date
1995
Doctoral Committee Chair(s)
DeVries, Arthur L.
Department of Study
Molecular and Integrative Physiology
Discipline
Physiology
Degree Granting Institution
University of Illinois at Urbana-Champaign
Degree Name
Ph.D.
Degree Level
Dissertation
Keyword(s)
Biology, Oceanography
Biology, Animal Physiology
Biology, Zoology
Language
eng
Abstract
Fishes inhabiting ice-laden waters of McMurdo Sound, Antarctica, have ice present on all external tissues. This includes the integument, gills, and intestinal tract. With one exception, all internal tissues and fluids including the heart, liver, red muscle, white muscle, blood, bile, urine and ocular fluids are ice-free. Ice is consistently identified in the spleens from three shallow water species. This, in vivo, presence of ice is presupposed by the in vitro mechanism of antifreeze activity. The presence of internal ice explains why all nototheniids in McMurdo Sound produce high systemic concentrations of antifreezes. Furthermore, its localization to the spleen suggests that one function of this organ is to remove ice crystals from the systemic circulation.
The presence of ice in these fishes correlates with the depths where seasonal ice grows in McMurdo Sound. Using high resolution temperature and conductivity measurements, we can identify the depths where ice formation occurs. The uppermost 30 m of the Sound are below the seawater freezing point for most of the austral spring and early summer. These waters are sites of ice growth. In the western Sound, waters below the in situ freezing point extend to 123 m. This unusually cold, deep water originates from beneath the Ross Ice Shelf. Water temperatures begin to rise in mid-December and by late-January they are above the equilibrium melting point (${-}1.1\sp\circ$C) of ice crystals sequestered in fish spleens. This warming trend affects the uppermost 200 m; a range that overlaps the depths where we capture the three species of fish with splenic ice. Therefore, in addition to a putative biological mechanism, there is a seasonal mechanism for the elimination of in vivo ice in shallow water fishes. Below 200 m, water temperatures are nearly isothermal and temporally stable. The probability of ice progressively decreases with depth because of the effect of hydrostatic pressure on the freezing point. It would appear that benthic fish assemblages are unlikely to encounter ice. However, should sporadic ice occur, they possess sufficient adaptations to avert freezing in their respective habitats.
Use this login method if you
don't
have an
@illinois.edu
email address.
(Oops, I do have one)
IDEALS migrated to a new platform on June 23, 2022. If you created
your account prior to this date, you will have to reset your password
using the forgot-password link below.